Undergrad publishes theory on immune dysfunction in space
It’s been known for decades that astronauts’ immune systems become suppressed in space, leaving them vulnerable to disease, but the exact mechanisms of immune dysfunction have remained a mystery — now a Cornell undergraduate has found a potential solution.
A biological and mechanical engineering double major in the College of Engineering, Rocky An ’23 published his theory, “MRTF May be the Missing Link in a Multiscale Mechanobiology Approach toward Macrophage Dysfunction in Space,” Sept. 12 in Frontiers in Cell and Developmental Biology.
An reviewed the last 20 years of literature on the behavior of macrophages — key cells in the body’s immune response — in space and recent research about how macrophages respond to forces in normal gravity, identifying a transcription factor that could prove to be the missing piece of the puzzle.
“I just kept asking questions about how the data is presented,” An said. “There are these two really important papers, in particular, one a review of how macrophages are suppressed in microgravity, and another about the mechanobiology of macrophages. I was able to connect these two papers, and that’s when the idea came to me. I was really excited, as it was kind of a eureka moment for me.”
In space, the lack of gravity changes the shape of the immune cell, and scientists have suspected that changes to the cytoskeleton, the filamented infrastructure of the cell, were involved in immune dysfunction. Recent studies in normal gravity have shown that disturbing the cytoskeleton of macrophages reduces the transport of a particular protein, a transcription factor important for immune response, to the nucleus.
By comparing the studies of cells in microgravity and analyzing the modes of study and associated timescales — whether macrophages were actually studied in space, or on a parabolic airplane, or in a simulation of microgravity in the lab — An was able to point to this protein, Myocardin-Related Transcription Factor (MRTF), as a probable culprit in immune system dysfunction.
Source: Read Full Article